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Equations for steady-state heat transfer are considered in curvilinear coordinates. The equations are shown 

to be simplest when one of the families of coordinates are isotherms. Conditions are obtained for which these 

coordinate systems and some exact solutions of the heat conduction equations must satisfy. 

In designing the equipment for casting production and lining of metallurgical plants it is necessary to know 

the temperature distribution in the rollers, bars, and units of lining. Calculation methods and results of solution 

of heat transfer equations are reported in [1-4 ]. Sometimes when it is convenient to use curvilinear coordinates 

that permit separation of variables [1, 2 ], it is necessary to perform calculations for workpieces with curvilinear 
surfaces. Characteristics of eigenfunctions for some coordinate systems are given in [2 ]. In such problems numerical 

calculations are made with slowly convergent series by using ununiform difference schemes [5 ]. 

Occasionally, a solution may be obtained by the semi-inverse method by making assumptions on the form 

of the isotherms and then checking a possible solution. In some problems, for instance, with the axial symmetry, 

the form of the isotherms is known. In other cases one succeeds in obtaining the solution in closed form by using 
such curvilinear coordinates in which one of the families of coordinate lines are isotherms. 

Here, there is some analogy with the method of solving the problem of plastic flow [6, 7 ], which is based 
on introducing coordinates in which one of the coordinate families are streamlines. Naturally, not any family of 

the curves described by differential functions can be isotherms; for this, the conditions described below are 

required. 

In the curvilinear coordinates a(x, y, z), fl(x, y, z), 7(x, y, z) the steady-state heat transfer equation is 

0--d ,l 0a +of f  ,t 0-b-fl ,l Lq o7 + rl r2HaQ=0' (1) 

where t is the temperature; 2 is the thermal conductivity, which can be a constant or a function of t; Q is the power 

of internal heat sources [2 ]; HI ,  H2, and H 3 are the coefficients of the first quadratic form (Lam~): 

= + + -b-d (2 )  

(the coefficients/-/2, Ha are determined analogously, see [2, 3 ]). (Nonstationary problems will be considered in a 

separate work.) In the two-dimensional problem the derivatives t, H1, H2 with respect to the variable 7 are equal 

to zero whereas H3 = 1. 

Equation (1) is written most simply with such a choice of the variables a, t3 when one of the coordinate 
families, e.g., a-lines, are isotherms and at Ot/Oa = Ot/Oy -~ O, Q ~ 0 

off 2 off ; 0 .  (3) 

Equation (3) has a solution only when H1Ha/H2 can be represented as a product of the functions a, fl, i.e., 
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H1H 3 
H---~ = f (a) ~, (fl). (4) 

Then from (3) we have the following solution: 

at c 1 . f 2dt = Cl f dr  a ~ = ~ ) ,  g-~+ c2, (5) 

where C1, C2 are  the integration constants. 

If (5) satisfies the boundary conditions, then we obtain an acceptable solution of the formulated problem. 

For the two-dimensional problem H3 = 1 and condition (4) has the form 

HI  
H2 = f (a) e (fl). (6) 

Here, the functions H1 , / / 2  are related to the equation [8 ] 

o-7 H~ Oa +07 0-~ =0" (7) 

Violation of conditions (4) or (6) means that these lines cannot be isotherms at either boundary conditions. 

At Q r 0 in Eq. (1) the a-lines can be isotherms if condition (4) or (6) is fulfilled and H1H2H3Q can be represented 

as the product of the function f(a) by some function/3. Below we shall consider two-dimensional and axisymmetric 

problems. In the latter case we may introduce the coordinates a, /3 in the meridian plane, and 7 is the angle of 
rotation about the axis y. In view of the axial symmetry [7 ]: 

Ha = x (a ,  /3). 

In polar coordinates of the two-dimensional problem 

a = arctan -y /3 = ~ H 1 = /6  H 2 = H 3 = 1 

and condition (6) is fulfilled at f(a) = C1, ~o(fl) = 1/Clfl. If Q = const, then H1H2Q = flQ, i.e., in this case the 
constant r-lines can be isotherms as well [1-3 ]. For the three-dimensional problem with spherical symmetry 

H1H3 r2 H a = x = / 3 c o s a ,  H----7-= c o s a ,  f ( a ) = C l c o s a ,  

/32 C1 
~o (13) - C1 , f ;tdt = C 2 - -fl--. 

Not only circumferences but also straight lines passing through the origin of coordinates can be isotherms. 

In this case, in the two-dimensional problem 

Y-- H I = I ,  a =  , f l = a r c t a n x ,  

C I 1 
H 2 = a ,  H a = l ,  / ( a ) = - - i f - ,  ~o(/3)=C--- T 

and condition (6) is fulfilled. If the dependence 2(9 is adopted as a power series 
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condition (6) is also fulfilled at Q = 0: 

Fig. 1. Temperature distribution with respect to the thickness of the part 

confined by logarithmic spirals, x, y, m; t, ~ 

2 (t) = 20 ( l + ~'~ antn ' (8) 

where 2o is ;t at t = 0 (n = 1, 2, 3 ...) and an are the coefficients characterizing 2(t), then in this case 

antn+ 1 ) 
2 0 t + n ~ = l n +  1 -  = C 1 / 3 + C  2. 

With axial symmetry  H 1 = 1, H2 = a, Ha = a cos/3, and the lines/3 = const describe isothermal conic surfaces. 

Since condition (4) is fulfilled at f(a) = C1, ~o(fl) -- cos/3/C1, we have the solution 

f 2dt = 0.5 (2 l ln 1 - s i n / 3  +(22 .  

For curvilinear coordinates including two families of logarithmic spirals (in the two-dimensional problem): 

~ ( a  / Hi fl 
H2 = ~ ' H 2 - a ' 

el /3 i(,~)- a' ~oq~)=~, 

f 2 d t  = C 1 lnfl  + C 2. 

(Condition (4) is not fulfilled and the logarithmic spirals fail to be the generatrices of isothermal surfaces.) 
If we use formula (8), restricting ourselves only to the function 2 (t), only when ai r O, then we arrive at 

1 I V (  ( 2 a l "  ) ] t ( f l ) = ~ - i  1 + ' ~ 0  k w l l n / 3 + C 2 )  - 1 . 

Figure 1 illustrates results of the temperature distribution calculation in the region confined by the spirals 

t3 = 1 (AB) , /3 = 2 ( C O ) ,  a = 4.25-10 -2 (AC ) , a = 2 (BD) , 

when temperatures t = 800~ on AB (at t3 = 1) and 1200~ on CD ([3 = 2) are prescribed. The calculations are 
made for a part of the screen manufactured from steel at 2 -- const = 2o = 29 W/(m-  deg) and one can write t(fl) --- 

534 



800 + 580 In ft. The  figure shows the temperature diagram along the line a -- 1. It should be noted that in some 

problems one can prescribe heat flux, not temperature, values, along some a-lines. Then  it is more convenient to 

introduce, as coordinates,  not isotherms, but the a-lines on which the projection of the heat flux 

2 0 t  
q-H2~" 

is a constant. The  logarithmic spirals represent the lines for which such a solution exists. Assuming 2 = const, t = 

x/-&)p~), we obtain that q is a function only of the fl-coordinate, and substitution of t(a, fl) into (1) yields 

d2~~ d~~ ~ = 0  
aft 2 fl dE 4/32 " 

This determines the solution 

~0 (fl) = C 1 sin (0.5 In I/~l) + c2 cos (0.5 In IPl) ,  

t (a ,  f l ) . =  C 1 ~ sin (0.5 In I/~l) + c2 ~ cos (0.5 in 131), 

q (fl) -- V~fl [ CI cos (0.5 In I/~1) - c2 sin (0.5 In I~1) ] .  

We now consider the coordinates of an elliptic cylinder 

x = a f t ,  y = X / ( a  2 -  1 ) ( l - f 1 2 ) .  

Since 

condition (6) is fulfilled at 

therefore the hyperbolas 

can be isotherms and in this case 

= , H 2 = H a = 1 
H1 a 2 - 1 1 - f12 ' ' 

f ( a )  Ci (a2 1)-0.5 1 = _ , ~ o ( ~ ) = ~ , r  e ,  

2 2 
x y m =  1 
f12 1 - f12 

f2d t  = C 1 arcsinfl  + C 2 . 

Replacing fl by  a ,  

a and f l ,  x = a f t ,  

(a < t ,  fl > 1), it is easy to show that the ellipses 

2 

can be isotherms 

y : X/(fl 2 1) (1 - a 2) 

2 
x + y = I  

f - 1  

(9) 

(10) 
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H 2 =  - , f ( a )  - , ~o ( f l )  - - -  
1 - a 2 ' f12 _ 1 ~ ' 

f 2dr = C 1 In (/5 + x/-f1-2- - 1 ) + C 2 . 

These  formulas have been used for calculation of the temperature  regimes of elliptic-section tubes 
manufactured from refractory materials and intended for liquid steel delivery under a meniscus level in continuous- 

casting moulds of thin stabs (in these cases elliptic-section tubes are used based on design considerations). Casting 

takes 1 .0-1 .5  h and already after 5 - 1 0  min the heat transfer reaches a steady state. If the temperatures tl and 

t2 are prescribed in the ill- and/52-lines, then at Q = O, 2 = const 

+ ['n + I 
Sometimes other solutions may be found in curvilinear coordinates. Thus, if we seek a solution of Eq. (1) 

o__ ot + o ot . . . . . . .  q J -  ) 

Oa Oa Off X / 1 - a z  Off + 
"-~* 0 

Ir-  v T Z _  l 

(at ;t = const, Q = const) in the form of the sum of the functions a and fl, then we obtain 

t (a fl) = Cx 4_Q [ a X + a r c s i n 2  f12 ] , - a + - I n  2 (t5 + ~ 2 - ~ -  1 )  . 

The coordinates of an elliptic cylinder are sometimes used for calculating the temperature of fuel cells of eUiptic- 

section reactors. 
For axial symmetry,  condition (4) is fulfilled at coordinates (9) when Ha = c~fl, ~(fl) = flXf~-A62: 

t ( f l ) = 0 " 5 C l l n (  ~ - l ) ~ / ~ S - ~ +  1 + C 2 "  

Prescribing the temperatures on two isothermal surfaces (hyperboloid of rotation) determines the constants C1 and 

C2. 
Condition (4) is also fulfilled for coordinates (10) at ~o(fl) = x / b 2 - 1 ; therefore the ellipsoids of rotation 

can be isothermal surfaces and 

t 66) = C 1 arctan vrf1-2 - 1 + C 2 . 

For the axisymmetrical problem with coordinates (10) and heat release Q -- const in the ellipsoid volume the search 

for a solution in the form of a sum of the functions a and fl determines 

t ( a , f l ) = c  1 + C  2 a r c t a n ~ + - T l n  ~ +  1 

+ ~ [ ln (afl) - O.S (a2 + fl2) 1 , 

where Ha = aft; Cb C2, Ca are constants determined by the boundary conditions. 
We shall consider the parabolic coordinates 

X a f t ,  y = 0 . 5 ( f 1 2 - - a 2 ) ,  H1 = H 2 = ~ + " - f l  2- , 
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Fig. 2. Temperature distribution on the part with parabolic surfaces. The 

temperature on the a-line is 2~ the heat flux q on the/3-line is equal to 2 
W / m  2. 

when in the two-dimensional problem Ha = 1, condition (6) is fulfilled and at Q = 0, ~o(fl) = 1/C1 the a-lines can 

be isotherms 

f 2dt = C1/3 + C 2. (11) 

Figure 2 illustrates the calculation when boundary conditions are prescribed at/31, tl = 300~ and at/52, t2 = 1000~ 

2 = const ffi 29 W / ( m .  deg). Here some isotherms (/3 = 0.25; 1.0; 1.5; 2.0) of the a-l ine = const and the temperature 

distribution along the a-l ine = 2 are Shown. On the/3-line = 2 a profile of the heat flux (W/m 2) is shown which is 

at its maximum at the top of the parabola. At Q = const ~ 0, )l = const Eq. (1) has the following particular solution: 

t ( a ,  fl) = C 1 - ~ ( a  4 + /34 ) .  

It is pertinent to note that a class of coordinate systems exists (a system of parabolic corodinates also enters it) 

where Hi  -- H2 = H in which condition (6) is always fulfilled and formula (11) yields a solution for the two- 

dimensional problem. From Eq. (7) it follows that In H is the harmonic function and in addition to the solutions 

of (11), in which the a-lines are isotherms, a particular solution (at Q = 0, 2 = 0, 2 = const) also exists: 

I ( a ,  fl) = C 1 In H + C 2 . 

We can give examples of coordinates in which the hyperbola isotherms [6 ] 

1 (a2 + fl2)-0.25 f l = x y ,  a = O . S ( x  2 - y 2 ) ,  H1 = H 2 = ~ -  

and formula (11) determines the solution. 

For bipolar coordinates (see [3 ]) 

2 = 1 + c t a n 2 a ,  x + ( y - c t a n a )  2 

( x - c t h f l ) 2 + y 2 = c t h 2 f l -  1,  

sin a sh/3 y = H = 
x = c h / 3  - c o s  a ' c h  f l  - c o s  a 

and the solution is also determined by formula (11). 

c h / 3  - c o s  a 
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Fig. 3. Calculation using bipolar coordinates. The temperature diagram on AO 
is given in ~ the heat flux at/3 = 0 is given in W/m z. 

Figure 3 illustrates the calculation of the two-dimensional problem when temperatures t = 40~ at fl -- 1 

and 300~ at/3 = 0 are prescribed. Moreover, the quantities Q = 0 are prescribed 

2 ( 0 = 2 0 ( 1 - 5 . 1 0 - 4 0 ,  2 0 = 3 0 0  W / ( m . d e g ) ,  a 1 = 5 - 1 0  -4 deg - 1 ,  

t (fl) = 2.103 (1 - ~/0.7225 + 0.238/3) 

in accordance with formula (11). 

The figure shows some isotherms (fl = 0.25; 0.5; 0.75) and the a-lines = const (0.47zc; 0.5n; 0.58~; 0.67n; 

0.77z~; 0.9n), which are dashed. Furthermore, temperature variation in the section OA (a = zc) and a profile of the 

heat flux on the line fl --- 0 are shown. On both diagrams the dashed line indicates the lines calculated at al = 0, 2 

= const. In this case, it is seen that the influence of 2(t) variation does not exceed 12~o. 

In the coordinate systems in which H 1 = H 2 = H ,  condition (6), but not (4), is always fulfilled, therefore 

in three-dimensional problems with axial symmetry when H3 = x, the a-lines can fail to be isotherms. It is easy to 

show that condition (4) is not fulfilled in hyperbolic and bipolar systems therefore the coordinate surfaces (the 

lines in the meridian plane) in them are not isotherms. At the same time for the parabolic coordinate system 

H1H 3 1 
H2 - a~,  f (a )  = Cla , ~ O) = V [~' 

and a solution, in which the paraboloids are isotherms, exists and is determined by formula (9). In this system 

one can construct particular solutions in which the a-lines are not isotherms, for instance: 

_9_ 4 
t ( a ,  r )  = C 1 - a2/32" t ( a  /3) = C 1 - 162 ( a  + /34)  

In bipolar, hyperbolic coordinates condition (6) is fulfilled but not (4). We may also provide opposite examples. If 
one introduces the coordinates a -- x2y, fl -- y2 _ 0.5x 2, one has H1 -- (x~/x 2 + 4y2)-1, /-/2 - (X/x 2 + 4y2) -1, 

H1H3/H2 = 1, and condition (4) is fulfilled at ~o (fl) = const. 

Formula (11) determines the solution, and the lines (in the meriduan plane) fl -- const, y = ~/0.5x 2 +/3 are 

the generatrices of the isothermal surfaces. At the same time, in the two-dimensional problem at Ha = 1, H1/H2 
= 1/x  and condition (6) is not fulfilled. 
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An answer to the question whether the given family of isotherms are  isotherms depends on the fulfilment 

of conditions (4) or (6), i.e., on whether the combination of the Lam~ coefficients may be represented as the product 

of the functions cz and/~ or not. In some problems the method discussed allows solutions to be obtained in a closed 

form. Some problems on diffusion may be treated analogously. 

N O T A T I O N  

al, a 2 . . . . .  an, coefficients determining the temperature dependence of thermal conductivity (see formula 

(8)); f (a) ,  function of the a-coordinate (see formula (4)); HI ,  H2, /-/3, coefficients of the first differential form 
(Lam~ coefficients) (see formula (2)); n, number of a term of the series in formula (8); q, heat flux; Q, power of 

volume heat release; x, y, z, Cartesian coordinates; a, r ,  7, general curvilinear orthogonal coordinates; ill, f12, 
coordinates of the boundary surfaces on which the temperatures are prescribed; XOl, thermal conductivity at t = 0; 

90 (fl), function of the r-coordinate (see formula (4)); ~ (fl), r-function determining temperature distribution in the 
case of constant heat flux along the coordinate lines. 
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